Mechanisms of increase in cardiac output during acute weightlessness in humans.

نویسندگان

  • Lonnie G Petersen
  • Morten Damgaard
  • Johan C G Petersen
  • Peter Norsk
چکیده

Based on previous water immersion results, we tested the hypothesis that the acute 0-G-induced increase in cardiac output (CO) is primarily caused by redistribution of blood from the vasculature above the legs to the cardiopulmonary circulation. In seated subjects (n = 8), 20 s of 0 G induced by parabolic flight increased CO by 1.7 ± 0.4 l/min (P < 0.001). This increase was diminished to 0.8 ± 0.4 l/min (P = 0.028), when venous return from the legs was prevented by bilateral venous thigh-cuff inflation (CI) of 60 mmHg. Because the increase in stroke volume during 0 G was unaffected by CI, the lesser increase in CO during 0 G + CI was entirely caused by a lower heart rate (HR). Thus blood from vascular beds above the legs in seated subjects can alone account for some 50% of the increase in CO during acute 0 G. The remaining increase in CO is caused by a higher HR, of which the origin of blood is unresolved. In supine subjects, CO increased from 7.1 ± 0.7 to 7.9 ± 0.8 l/min (P = 0.037) when entering 0 G, which was solely caused by an increase in HR, because stroke volume was unaffected. In conclusion, blood originating from vascular beds above the legs can alone account for one-half of the increase in CO during acute 0 G in seated humans. A Bainbridge-like reflex could be the mechanism for the HR-induced increase in CO during 0 G in particular in supine subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vasorelaxation in space.

During everyday life, gravity constantly stresses the cardiovascular system in upright humans by diminishing venous return. This decreases cardiac output and induces systemic vasoconstriction to prevent blood pressure from falling. We therefore tested the hypothesis that entering weightlessness leads to a prompt increase in cardiac output and to systemic vasodilatation and that these effects pe...

متن کامل

Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review.

Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV) mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working perfor...

متن کامل

Effects of parabolic flight and spaceflight on the endocannabinoid system in humans.

The endocannabinoid system (ECS) plays an important role in the regulation of physiological functions,from stress and memory regulation to vegetative control and immunity. The ECS is considered a central and peripheral stress response system to emotional or physical challenges and acts through endocannabinoids (ECs), which bind to .their receptors inducing subsequent effecting mechanisms. In ou...

متن کامل

Arterial pressure in humans during weightlessness induced by parabolic flights.

Results from our laboratory have indicated that, compared with those of the 1-G supine (Sup) position, left atrial diameter (LAD) and transmural central venous pressure increase in humans during weightlessness (0 G) induced by parabolic flights (R. Videbaek and P. Norsk. J. Appl. Physiol. 83: 1862-1866, 1997). Therefore, because cardiopulmonary low-pressure receptors are stimulated during 0 G, ...

متن کامل

Low-magnitude whole body vibration with resistive exercise as a countermeasure against cardiovascular deconditioning after 60 days of head-down bed rest.

Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 111 2  شماره 

صفحات  -

تاریخ انتشار 2011